
pyiso Documentation
Release 0.3

Anna Schneider

October 31, 2017

Contents

1 Introduction 3
1.1 What’s an ISO? . 3
1.2 What’s included . 3

2 Installation 9
2.1 Install . 9
2.2 Uninstall . 9

3 Configuration 11
3.1 Accounts . 11
3.2 Logging and debug . 11

4 Usage 13
4.1 Clients . 13
4.2 Tasks . 15

5 Options 17

6 Contributing 19
6.1 For developers . 19
6.2 For data users . 19
6.3 For project admins . 19
6.4 Legal things . 20

7 Supporting 21

8 Indices and tables 23

i

ii

pyiso Documentation, Release 0.3

Contents:

Contents 1

pyiso Documentation, Release 0.3

2 Contents

CHAPTER 1

Introduction

Pyiso provides Python client libraries for ISO and other power grid data sources. It powers the WattTime Impact API,
among other things.

What’s an ISO?

Electricity markets are operated by “balancing authorities,” which manage supply and demand for a given service area.
The bigger balancing authorities, called Independent Services Operators and Regional Transmission Organizations
(ISOs/RTOs, or simply ISOs), together cover about 2/3 of US electricity consumers.

ISOs are required to provide real-time data about electricity market operations, but choose to do so in a wide variety
of unstandardized, inconvenient formats. Some smaller balancing authorities provide data too.

What’s included

Pyiso makes it easier to collect data from ISOs and other balancing authorities by providing a uniform Python interface
to each data stream. See the Usage page for instructions on how to get started.

Specifically, here are the included balancing authorities and their respective data sources:

Note: Some balancing authorities offer data directly and through the EIA client.

3

https://api.watttime.org/
http://www.isorto.org/

pyiso Documentation, Release 0.3

balancing authority abbrev. balancing authority name/region data source
AESO Alberta Elec. System Operator (Canada) AESO
AZPS Arizona Public Service SVERI
BCH British Columbia Hydro (Canada) BCH
BPA Bonneville Power Administration (Pac NW) BPA
CAISO California ISO CAISO
DEAA DECA Arlington Valley (AZ) SVERI
ELE El Paso Electric SVERI
ERCOT Texas ERCOT
EU European Union ENTSO
GRIF Griffith Energy (AZ) SVERI
HGMA Harquahala Generation Maricopa Arizona SVERI
IESO Ontario (Canada) IESO
IID Imperial Irrigation District (CA) SVERI
ISONE ISO New England ISONE
MISO Midcontinent ISO MISO
NBP New Brunswick Power (Canada) NBPower
NLH Newfoundland and Labrador Hydro (Canada) NLHydro
NSP Nova Scotia Power (Canada) NSPower
NEVP Nevada Power NVEnergy
NYISO New York ISO NYISO
PEI Price Edward Island (Canada) PEI
PJM Mid-Atlantic PJM
PNM Public Service Co New Mexico SVERI
SASK Saskatchewan Power (Canada) SaskPower
SPPC Sierra Pacific Power (NV) NVEnergy
SRP Salt River Project (AZ) SVERI
TEPC Tuscon Electric Power Co SVERI
WALC WAPA Desert Southwest (NV, AZ) SVERI
YUKON Yukon Energy (Canada) YUKON

The following BAs are available through the EIA client.

balancing authority abbrev. balancing authority name/region data source
AEC PowerSouth Energy Cooperative EIA
AECI Associated Electric Cooperative, Inc. EIA
AESO Alberta Electric System Operator EIA
AVA Avista Corporation EIA
AZPS Arizona Public Service- EIA data EIA
BANC Bal Authority of Northern California EIA
BCTC British Columbia Transmission Corp EIA
BPAT Bonneville Power Admin- EIA data EIA
CAISO California ISO- EIA data EIA
CFE Comision Federal de Electricidad EIA
CHPD Pub Utility Dist 1 of Chelan County EIA
CISO California Independent System Operator EIA
CPLE Duke Energy Progress East EIA
CPLW Duke Energy Progress West EIA
DEAA DECA Arlington Valley (AZ)- EIA data EIA
DOPD PUD No. 1 of Douglas County EIA
DUK Duke Energy Carolinas EIA
EEI Electric Energy, Inc EIA
EPE El Paso Electric - EIA data EIA
ERCO Texas- EIA data EIA

Continued on next page

4 Chapter 1. Introduction

pyiso Documentation, Release 0.3

Table 1.1 – continued from previous page
balancing authority abbrev. balancing authority name/region data source
FMPP Florida Municipal Power Pool EIA
FPC Duke Energy Florida EIA
FPL Florida Power and Light Co. EIA
GCPD PUD of Grant County, Washington EIA
GRID Gridforce Energy Management EIA
GRIF Griffith Energy (AZ) - EIA data EIA
GRMA Gila River Power EIA
GVL Gainesville Regional Utilities EIA
GWA NaturEner Power Watch EIA
HGMA Harquahala Gen Maricopa Az - EIA EIA
HQT Hydro-Quebec TransEnergie EIA
HST City of Homestead EIA
IESO Ontario IESO EIA
IID Imperial Irrigation District- EIA EIA
IPCO Idaho Power Company EIA
ISNE ISO New England - EIA data EIA
JEA JEA Jacksonville, Fl EIA
LDWP Los Angeles Dept of Water and Power EIA
LGEE Louisville Gas & Electric/KY Utilities EIA
MHEB Manitoba Hydro EIA
MISO Midcontinent ISO - EIA data EIA
NBSO New Brunswick System Operator EIA
NEVP Nevada Power - EIA data EIA
NSB New Smyrna Beach UC EIA
NWMT NorthWestern Corporation EIA
NYIS New York ISO - EIA data EIA
OVEC Ohio Valley Electric Corporation EIA
PACE PacifiCorp East EIA
PACW PacifiCorp West EIA
PGE Portland General Electric Co EIA
PJM Mid-Atlantic - EIA data EIA
PNM Public Service Co New Mexico- EIA EIA
PSCO Public Service Company of Colorado EIA
PSEI Puget Sound Energy EIA
SC South Carolina Public Service Auth EIA
SCEG South Carolina Electric and Gas EIA
SCL Seattle City Light EIA
SEC Seminole Electric Cooperative EIA
SEPA Southeastern Power Admin EIA
SOCO Southern Company Services EIA
SPA Southwestern Power Admin EIA
SPC Saskatchewan Power Corporation EIA
SRP Salt River Project (AZ) - EIA data EIA
SWPP Southwest Power Pool EIA
TAL City of Tallahassee EIA
TEC Tampa Electric Company EIA
TEPC Tuscon Electric Power Co EIA
TIDC Turdock Irrigation District EIA
TPWR City of Tacoma DPU EIA
TVA Tennessee Valley Authority EIA
WACM Western Area Power Admin- Rocky Mtn EIA

Continued on next page

1.2. What’s included 5

pyiso Documentation, Release 0.3

Table 1.1 – continued from previous page
balancing authority abbrev. balancing authority name/region data source
WALC WAPA Desert Southwest (NV, AZ)-EIA EIA
WAUW Western Area Power Admin- Great Plains EIA
WWA NaturEner Wind Watch EIA
YAD Alcoa Power Generation- Yadkin EIA

For European data, you also need to specify a “control area”. The available control areas are:

control area abbrev. control area country/provider
AL Albania
AT Austria
BA Bosnia and Herzegovina
BE Belgium
BG Bulgaria
CH Switzerland
CY Cyprus
CZ Czech Republic
DE(50HzT) Germany (50 HzT)
DE(Amprion) Germany (Amprion)
DE(TenneT GER) Germany (TenneT)
DE(TransnetBW) Germany (Transnet)
DK Denmark
EE Estonia
ES Spain
FI Finland
FR France
GR Greece
HR Croatia
HU Hungary
IE Ireland
IT Italy
LT Lithuania
LU Luxembourg
LV Latvia
MD Moldavia
ME Montenegro
MK Macedonia
MT Malta
NIE UK (NIE)
NL Netherlands
NO Norway
National Grid UK (National Grid)
PL Poland
PL-CZ Czech Republic/Poland
PT Portugal
RO Romania
RS Serbia
RU Russia
RU-KGD Russia (KGD)
SE Sweden
SI Slovenia
SK Slovakia

Continued on next page

6 Chapter 1. Introduction

pyiso Documentation, Release 0.3

Table 1.2 – continued from previous page
control area abbrev. control area country/provider
TR Turkey
UA Ukraine
UA-WEPS Ukraine (WEPS)

1.2. What’s included 7

pyiso Documentation, Release 0.3

8 Chapter 1. Introduction

CHAPTER 2

Installation

Install

Pyiso is available on PyPI and on GitHub.

For users, the easiest way to get pyiso is with pip:

pip install pyiso

For developers, you can get the source from GitHub or PyPI, then:

cd pyiso
python setup.py install

Pyiso depends on pandas so be prepared for a large install.

Windows Users: If you are unable to setup pyiso due to issues with installing or using numpy, a dependent package of
pyiso, try installing a precompiled version of numpy found here: http://www.lfd.uci.edu/~gohlke/pythonlibs/

Uninstall

To uninstall:

pip uninstall pyiso

9

https://pypi.python.org/pypi?name=pyiso&:action=display
https://github.com/WattTime/pyiso
https://github.com/WattTime/pyiso.git
https://pypi.python.org/packages/source/p/pyiso/pyiso-0.1.tar.gz
http://www.lfd.uci.edu/~gohlke/pythonlibs/

pyiso Documentation, Release 0.3

10 Chapter 2. Installation

CHAPTER 3

Configuration

Accounts

ISONE requires a username and password to collect data. You can register for an ISONE account here (http://www.iso-
ne.com/participate/applications-status-changes/access-software-systems#data-feeds)

Then, set your usernames and passwords as environment variables:

export ISONE_USERNAME=myusername1 export ISONE_PASSWORD=mysecret1

The EU (ENTSOe) REST API requires a security token. You must first sign up for an account and then get your
security token from here (https://transparency.entsoe.eu/). To use the token set as an environment variable as follows:

export ENTSOe_SECURITY_TOKEN=token

The EIA API requires an API key. You can apply for a key here (https://www.eia.gov/opendata/register.cfm). To use
the key, set an environment variable as follows:

export EIA_KEY=my-eia-api-key

All other ISOs allow unauthenticated users to collect data, so no other credentials are needed.

Logging and debug

By default, logging occurs at the INFO level. If you want to change this, you can set the LOG_LEVEL environment
variable to the integer associated with the desired log level. For instance, ERROR is 40 and DEBUG is 10.

You can also turn on DEBUG level logging by setting the DEBUG environment variable to a truthy value. This setting
will additionally enable caching during testing, which will significantly speed up the test suite.

11

http://www.iso-ne.com/participate/applications-status-changes/access-software-systems#data-feeds
http://www.iso-ne.com/participate/applications-status-changes/access-software-systems#data-feeds
https://transparency.entsoe.eu/
https://www.eia.gov/opendata/register.cfm
https://docs.python.org/2/library/logging.html#logging-levels

pyiso Documentation, Release 0.3

12 Chapter 3. Configuration

CHAPTER 4

Usage

There are two main ways to use pyiso: via the client objects, or via celery tasks. The client approach is preferred
for scripted data analysis. The task approach enables asynchronous or periodic data collection and is in use at the
WattTime Impact API.

Clients

First, create a client using the client_factory(ba_name) function. ba_name should be taken from this list of
abbreviated names for available balancing authorities listed on the Introduction page. For example:

>>> from pyiso import client_factory
>>> isone = client_factory(’ISONE’)

Requests made to external data sources will automatically time out after 20 seconds. To change this value, add a
keyword argument in the constructor:

>>> isone = client_factory(’ISONE’, timeout_seconds=60)

Each client returned by client_factory is derived from BaseClient and provides one or more of the following
methods (see also Options):

BaseClient.get_generation(latest=False, yesterday=False, start_at=False, end_at=False,
**kwargs)

Scrape and parse generation fuel mix data.

Parameters

• latest (bool) – If True, only get the generation mix at the one most recent available time
point. Available for all regions.

• yesterday (bool) – If True, get the generation mix for every time point yesterday. Not
available for all regions.

• start_at (datetime) – If the datetime is naive, it is assummed to be in the timezone of the
Balancing Authority. The timestamp of all returned data points will be greater than or
equal to this value. If using, must provide both start_at and end_at parameters. Not
available for all regions.

• end_at (datetime) – If the datetime is naive, it is assummed to be in the timezone of the
Balancing Authority. The timestamp of all returned data points will be less than or equal to
this value. If using, must provide both start_at and end_at parameters. Not available
for all regions.

13

http://api.watttime.org/
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/datetime.html#module-datetime
http://docs.python.org/library/datetime.html#module-datetime

pyiso Documentation, Release 0.3

Returns List of dicts, each with keys [ba_name, timestamp, freq, market,
fuel_name, gen_MW]. Timestamps are in UTC.

Return type list

BaseClient.get_load(latest=False, yesterday=False, start_at=False, end_at=False, **kwargs)
Scrape and parse load data.

Parameters

• latest (bool) – If True, only get the load at the one most recent available time point. Available
for all regions.

• yesterday (bool) – If True, get the load for every time point yesterday. Not available for all
regions.

• start_at (datetime) – If the datetime is naive, it is assummed to be in the timezone of the
Balancing Authority. The timestamp of all returned data points will be greater than or
equal to this value. If using, must provide both start_at and end_at parameters. Not
available for all regions.

• end_at (datetime) – If the datetime is naive, it is assummed to be in the timezone of the
Balancing Authority. The timestamp of all returned data points will be less than or equal to
this value. If using, must provide both start_at and end_at parameters. Not available
for all regions.

Returns List of dicts, each with keys [ba_name, timestamp, freq, market,
load_MW]. Timestamps are in UTC.

Return type list

BaseClient.get_trade(latest=False, yesterday=False, start_at=False, end_at=False, **kwargs)
Scrape and parse import/export data. Value is net export (export - import), can be positive or negative.

Parameters

• latest (bool) – If True, only get the trade at the one most recent available time point. Avail-
able for all regions.

• yesterday (bool) – If True, get the trade for every time point yesterday. Not available for all
regions.

• start_at (datetime) – If the datetime is naive, it is assummed to be in the timezone of the
Balancing Authority. The timestamp of all returned data points will be greater than or
equal to this value. If using, must provide both start_at and end_at parameters. Not
available for all regions.

• end_at (datetime) – If the datetime is naive, it is assummed to be in the timezone of the
Balancing Authority. The timestamp of all returned data points will be less than or equal to
this value. If using, must provide both start_at and end_at parameters. Not available
for all regions.

Returns List of dicts, each with keys [ba_name, timestamp, freq, market,
net_exp_MW]. Timestamps are in UTC.

Return type list

The lists returned by clients are conveniently structured for import into other data structures like
pandas.DataFrame:

>>> import pandas as pd
>>> data = isone.get_generation(latest=True)
>>> df = pd.DataFrame(data)

14 Chapter 4. Usage

http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/datetime.html#module-datetime
http://docs.python.org/library/datetime.html#module-datetime
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/datetime.html#module-datetime
http://docs.python.org/library/datetime.html#module-datetime

pyiso Documentation, Release 0.3

>>> print df
ba_name freq fuel_name gen_MW market timestamp

0 ISONE n/a coal 1170.0 RT5M 2014-03-29 20:40:27+00:00
1 ISONE n/a hydro 813.8 RT5M 2014-03-29 20:40:27+00:00
2 ISONE n/a natgas 4815.7 RT5M 2014-03-29 20:40:27+00:00
3 ISONE n/a nuclear 4618.8 RT5M 2014-03-29 20:40:27+00:00
4 ISONE n/a biogas 29.5 RT5M 2014-03-29 20:40:27+00:00
5 ISONE n/a refuse 428.6 RT5M 2014-03-29 20:40:27+00:00
6 ISONE n/a wind 85.8 RT5M 2014-03-29 20:40:27+00:00
7 ISONE n/a biomass 434.3 RT5M 2014-03-29 20:40:27+00:00

Happy data analysis!

Tasks

If you have a celery environment set up, you can use the tasks provided in the pyiso.tasks module. There is one
task for each of the client’s get_* methods that implements a thin wrapper around that method. The call signatures
match those of the corresponding client methods, except that the ba_name is a required first argument. For example,
to get the latest ISONE generation mix data every 10 minutes, add this to your celerybeat schedule:

CELERYBEAT_SCHEDULE = {
’get-isone-genmix-latest’ : {

’task’: ’pyiso.tasks.get_generation’,
’schedule’: crontab(minute=’*/10’),
’args’: [’ISONE’],
’kwargs’: {’latest’: True},

}
}

In practice, you will want to chain these tasks with something that captures and processes their output.

4.2. Tasks 15

http://www.celeryproject.org/
http://docs.celeryproject.org/en/latest/userguide/periodic-tasks.html#crontab-schedules

pyiso Documentation, Release 0.3

16 Chapter 4. Usage

CHAPTER 5

Options

Not all date range options are available for all methods in all regions. Here’s what’s available now:

method latest start_at and end_at pair yesterday forecast ok
AESO.get_generation yes no no no
AESO.get_load yes yes yes yes
AESO.get_trade yes no no no
AESO.get_lmp no no no no
BCH.get_generation no no no no
BCH.get_load no no no no
BCH.get_trade yes yes yes no
BPA.get_generation yes yes no no
BPA.get_load yes yes no no
CAISO.get_generation yes yes yes yes
CAISO.get_load yes yes yes yes
CAISO.get_trade yes yes yes yes
EIA.get_generation yes yes yes no
EIA.get_load yes yes yes yes
EIA.get_trade yes yes yes no
ERCOT.get_generation yes no no no
ERCOT.get_load yes yes no yes
EU.get_generation yes yes yes no
EU.get_load yes yes no yes
IESO.get_generation yes yes yes yes
IESO.get_load yes yes yes yes
IESO.get_trade yes yes yes yes
ISONE.get_generation yes yes no no
ISONE.get_load yes yes no yes
MISO.get_generation yes yes no yes
MISO.get_load yes yes no yes
MISO.get_trade no yes no yes
MISO.get_lmp yes yes no yes
NLH.get_generation no no no no
NLH.get_load yes no no no
NLH.get_trade no no no no
NPB.get_generation no no no no
NPB.get_load yes yes no yes
NPB.get_trade yes no no no
NSP.get_generation yes yes no no
NSP.get_load yes yes no yes

Continued on next page

17

pyiso Documentation, Release 0.3

Table 5.1 – continued from previous page
method latest start_at and end_at pair yesterday forecast ok
NSP.get_trade no no no no
NVEnergy.get_load yes yes no yes
NYISO.get_generation yes yes no no
NYISO.get_load yes yes no yes
NYISO.get_trade yes yes no no
PEI.get_generation yes no no no
PEI.get_load yes no no no
PEI.get_trade no no no no
PJM.get_generation yes no no no
PJM.get_load yes yes no yes
PJM.get_trade yes no no no
SASK.get_generation no no no no
SASK.get_load yes no no no
SASK.get_trade no no no no
SVERI.get_generation yes yes no no
SVERI.get_load yes yes no no
YUKON.get_generation yes yes no no
YUKON.get_load yes yes no no
YUKON.get_trade n/a n/a n/a n/a

18 Chapter 5. Options

CHAPTER 6

Contributing

Right now, pyiso only has interfaces for collecting a small subset of the interesting electricity data that the ISOs
provide. You can help by adding more! Please create an issue on github if you have questions about any of this.

For developers

When you’re ready to get started coding:

• fork the repo

• install in development mode: python setup.py develop

• run the tests: python setup.py test (or python setup.py test -s
tests.test_some_file.TestSomeClass.test_some_method to run a specific subset of
the tests)

• add tests to the tests directory and code to the pyiso directory, following the conventions that you see in the
existing code

• add docs to the docs/source directory

• add a note to the Upcoming Changes section in README.md on a separate line

• send a pull request

• sign the CLA at https://www.clahub.com/agreements/WattTime/pyiso (see below)

For data users

Found a bug, or know of a data source that you think pyiso should include? Please add an issue to github. Ideas of
new balancing authorities (anywhere in the world) and of new data streams from ISOs we already support are both
very welcome.

For project admins

Before making a release, check that these are true in the master branch of the GitHub repo:

• the changelog in README.md includes all changes since the last release

• test coverage is good and the tests pass locally and on Travis

19

https://github.com/WattTime/pyiso/issues
https://github.com/WattTime/pyiso
https://www.clahub.com/agreements/WattTime/pyiso
https://github.com/WattTime/pyiso/issues

pyiso Documentation, Release 0.3

• changes are reflected in the docs in docs/source

• the version number is upgraded in pyiso/__init__.py

To make a release, run these commands (replacing 0.x.y with the correct version number):

git checkout master
git pull origin master
git tag v0.x.y
git push origin master --tags
python setup.py sdist upload

Releasing via twine:

python setup.py sdist
twine upload dist/pyiso-VERSION.tar.gz

Legal things

Because we use pyiso as the base for our other software products, we ask that contributors sign the following Contrib-
utor License Agreement. If you have any questions, or concerns, please drop us a line on Github.

You and WattTime, Corp, a california non-profit corporation, hereby accept and agree to the following terms and
conditions:

Your “Contributions” means all of your past, present and future contributions of object code, source code
and documentation to pyiso however submitted to pyiso, excluding any submissions that are conspicu-
ously marked or otherwise designated in writing by You as “Not a Contribution.”

You hereby grant to the WattTime, Corp a non-exclusive, irrevocable, worldwide, no-charge, transferable
copyright license to use, execute, prepare derivative works of, and distribute (internally and externally, in
object code and, if included in your Contributions, source code form) your Contributions. Except for the
rights granted to the WattTime, Corp in this paragraph, You reserve all right, title and interest in and to
your Contributions.

You represent that you are legally entitled to grant the above license. If your employer(s) have rights to
intellectual property that you create, you represent that you have received permission to make the Conti-
butions on behalf of that employer, or that your employer has waived such rights for your Contributions
to pyiso.

You represent that, except as disclosed in your Contribution submission(s), each of your Contributions is
your original creation. You represent that your Contribution submissions(s) included complete details of
any license or other restriction (including, but not limited to, related patents and trademarks) associated
with any part of your Contributions)(including a copy of any applicable license agreement). You agree to
notify WattTime, Corp of any facts or circumstances of which you become aware that would make Your
representations in the Agreement inaccurate in any respect.

You are not expected to provide support for your Contributions, except to the extent you desire to provide
support. Your may provide support for free, for a fee, or not at all. Your Contributions are provided
as-is, with all faults, defects and errors, and without any warranty of any kind (either express or implied)
including, without limitation, any implied warranty of merchantability and fitness for a particular purpose
and any warranty of non-infringement.

To get started, sign the Contributor Li-
cense Agreement.

20 Chapter 6. Contributing

https://www.clahub.com/agreements/WattTime/pyiso

CHAPTER 7

Supporting

Pyiso is an open source project maintained by WattTime, a nonprofit that develops software standards to reduce power
grid pollution and enable new kinds of clean energy choices.

We’ve spent more than 1000 developer-hours building pyiso, keeping it up-to-date with evolving data sources, and
adding features requested by the community. As the foundation of our internal data pipeline, it makes our work easier
every day. And we’ve made it free and open source because we want to make open energy data access a bit easier for
other researchers, engineers, and citizens too!

Want to chip in and support pyiso? You or your company can make a tax-deductible donation to WattTime here. Every
dollar helps us help you! We also have corporate sponsorship opportunities available; get in touch if you’re interested.

Another great way to support pyiso is to send us a quick thank-you note. Your testimonials help us raise money from
other folks, so it really does make a difference. Thanks bunches!

21

http://WattTime.org
http://watttime.org/donate/
http://watttime.org/contact/
http://watttime.org/contact/

pyiso Documentation, Release 0.3

22 Chapter 7. Supporting

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

23

	Introduction
	What's an ISO?
	What's included

	Installation
	Install
	Uninstall

	Configuration
	Accounts
	Logging and debug

	Usage
	Clients
	Tasks

	Options
	Contributing
	For developers
	For data users
	For project admins
	Legal things

	Supporting
	Indices and tables

